ADC home pageIntroductionGoalsWhy digitize?Number RepresentationDigital to AnalogAnalog to DigitalApplicationsLiterature Citations

Bits, Noise, and Linearity; the Imperfections of ADCs

Choose Subtopic

Full scale range

What range of signals needs to be recorded? The electrical power grid may carry 60 kV at 120 kA, while a biological cell may have ion currents ~ fA at potential to a few μV. ADC boards typically have full scale ranges no bigger than ±15 V, but may have uni- or bipolar settings and ranges as low as 10 mV. The number of bits one needs interacts with the range. Suppose a measurement is needed with a resolution of 10 μV. To ensure that one can see noise on top of this range, one least significant bit might need to be 1 μV. If one were using a unipolar ADC, at 12 bits full scale would have to be 212 * 1 μV = 4.096 mV, a most unlikely combination. At 16 bits, full scale would be
216 * 1 μV = 65.54 mV, still smaller than is common, but conceivable. But for a 24 bit converter, full scale would be 224 * 1 μV = 16.77 V, bigger than any common range. So a real 24 bit converter would be used on the ±5 V range, with a least significant bit magnitude of about 10 V/224 = 0.6 μV.



DAC Ladder Networks DAC Speed and Glitches Scheeline Group Home Page Univ. of Illinois at Urbana-Champaign Home Page Department of Chemistry Home Page Creative Commons License System Homepage University of Illinois Homepage The Camille & Henry Dreyfus Foundation Homepage Home